F2Semana
15 martes
6.13 Nuevas tecnologías y nuevos materiales:
Laceres
Preguntas
|
Nuevas tecnologías
¿Qué es la nanotecnología?
|
¿Cuáles son las aplicaciones de la
nanotecnología?
|
Nuevos materiales
¿Qué es un material superconductor?
|
¿Cuáles son las aplicaciones de los materiales
superconductores?
|
Laceres
¿Qué es un rayo laser?
|
¿Cuáles son las aplicaciones del
rayo laser?
|
Equipo
|
2
|
6
|
3
|
1
|
4
|
5
|
Respuestas
|
La
nanotecnología es una nueva tecnología que se basa en la manipulación de
materiales microscópicos. Para comprender mejor este concepto, es de gran
ayuda conocer lo que el término “nano” significa. Éste se refiere a una
unidad de medida que corresponde a la milmillonésima parte de un metro. Esta
es una medida tan pequeña, que si juntamos cinco átomos y los ponemos en
línea, recién ahí juntamos un nanómetro. Por ende, la nanotecnología
corresponde a la creación y manipulación de aquellos materiales que entren en
esta pequeñísima escala, que va desde los 5 a los 50 o 100 átomos.
|
Las aplicaciones a medio
y largo plazo son infinitas. Los campos que están experimentando contínuos
avances son:
- Energias alternativas, energía del hidrógeno, pilas (células) de combustible, dispositivos de ahorro energético. Administración de medicamentos, especialmente para combatir el cáncer y otras enfermedades.-Computación cuántica, semiconductores, nuevos chips. -Seguridad. Microsensores de altas prestaciones. Industria militar.
Aplicaciones
industriales muy diversas: tejidos, deportes, materiales, automóviles,
cosméticos, pinturas, construcción, envasados alimentos, pantallas planas...
Contaminación medioambiental. Prestaciones aeroespacioles: nuevos materiales, etc. - Fabricación molecular. |
Se denomina
superconductividad a la
capacidad intrínseca que poseen ciertos materiales para conducir corriente eléctrica
sin resistencia
ni pérdida de energía en determinadas
condiciones. La resistividad eléctrica de un conductor metálico disminuye gradualmente a medida que la temperatura se reduce. |
Algunas aplicación de los superconductores por
ejemplo las fibras ópticas (el superconductor por excelencia) son en las
telecomunicaciones debido a su resistencia en las interferencias
electromagnéticas.
|
El rayo láser es un haz de luz supermasivo que se caracteriza por
manterse limitado a una pequeña área de superficie, no perdiendo su fuerza
por la difusión en su alrededor.
|
Industria
Los haces
enfocados pueden calentar, fundir o vaporizar materiales de forma precisa.
Por ejemplo, los láseres se usan para taladrar diamantes, modelar máquinas herramientas,
recortar componentes micro electrónico, calentar chips semiconductores,
cortar patrones de moda, sintetizar nuevos materiales o intentar inducir la
fusión nuclear controlada.
Investigación
científica
Los láseres se
emplean para detectar los movimientos de la corteza terrestre y para efectuar
medidas geodésicas. También son los detectores más eficaces de ciertos tipos
de contaminación atmosférica. Los láseres se han empleado igualmente para
determinar con precisión la distancia entre la Tierra y la Luna y en
experimentos de relatividad.
Comunicaciones
La luz de un
láser puede viajar largas distancias por el espacio exterior con una pequeña
reducción de la intensidad de la señal. Debido a su alta frecuencia, la luz
láser puede transportar, por ejemplo, 1.000 veces más canales de televisión
de lo que transportan las microondas. Por ello, los láseres resultan ideales
para las comunicaciones espaciales
Medicina
Con haces
intensos y estrechos de luz láser es posible cortar y cauterizar ciertos tejidos
en una fracción de segundo sin dañar al tejido sano circundante. El láser se
ha empleado para `soldar' la retina, perforar el cráneo, reparar lesiones y
cauterizar vasos sanguíneos. También se han desarrollado técnicas láser para
realizar pruebas de laboratorio en muestras biológicas pequeñas.
Tecnología militar
Los sistemas
de guiado por láser para misiles, aviones y satélites son muy comunes. La
capacidad de los láseres de colorante sintonizables para excitar de forma
selectiva un átomo o molécula puede llevar a métodos más eficientes para la
separación de isótopos en la fabricación de armas nucleares.
|
Actividades con Rayo laser.
1.- Se usa un emisor láser de tipo común (llavero). Al apuntar con el emisor a una superficie se puede observar un punto rojo que corresponde a la incidencia del rayo láser sobre esa superficie. Si se espolvorea un polvo entre el emisor y el punto se puede observar el rayo láser debido a la reflexión del mismo en las partículas de polvo. |
|
2.- Rayo láser dentro de una caja
Se utiliza una caja de vidrio transparente dentro de la cual se coloca un poco de humo. Desde la parte externa de la caja se activa un emisor láser de tipo común (llavero), se puede observar el rayo solamente dentro de la caja fuera de ella no se percibe. |
|
3.- Rayo láser a través del agua
Se utiliza una caja de vidrio transparente con agua en la cual se ha agregado un poquito de leche. Se emite un rayo láser en la parte externa y se dirige de tal manera que atraviese la caja. Se puede observar que el rayo se ve claramente dentro de la caja pero no se percibe fuera de ella. |
|
4.- Trayectoria de la luz en una
superficie transparente
En una pecera que contiene humo se coloca un vidrio transparente en posición vertical. Al hacer incidir un rayo láser, formando un ángulo con la superficie de trasparente, se puede observar que parte del rayo atraviesa la superficie y otra parte se refleja en la misma, siendo de menor intensidad el rayo reflejado. |
|
5.- Trayectoria de la luz en una
superficie semitransparente
En una pecera que contiene humo se coloca un vidrio semitransparente en posición vertical. Al hacer incidir un rayo láser, formando un ángulo con la superficie semitransparente, se puede observar que parte del rayo atraviesa la superficie y otra parte se refleja en la misma, siendo de mayor intensidad el rayo reflejado. |
|
6.- Trayectoria de la luz en una
superficie no transparente opaca
En una pecera que contiene humo se coloca una superficie no transparente opaca en posición vertical. Al hacer incidir un rayo láser, formando un ángulo con esa superficie, se puede observar que el rayo no se refleja. |
|
7.- Trayectoria de la luz en una superficie
no transparente reflectante
En una pecera que contiene humo se coloca un espejo en posición vertical. Al hacer incidir un rayo láser, formando un ángulo con esa superficie no transparente, se puede observar que el rayo se refleja. |
|
8.- Reflexión especular de la luz
Se utiliza una pecera que contiene un poco de humo. Al hacer incidir un rayo láser, proveniente de un apuntador, sobre un espejo colocado en su base, se puede observar que el rayo se refleja de forma nítida. |
|
9.- Reflexión difusa de la luz
Se utiliza una pecera que contiene un poco de humo. Al hacer incidir un rayo láser, proveniente de un apuntador, sobre una superficie corrugada colocada en su base, se puede observar que el rayo se refleja de manera difusa. |
|
10.- Ley de la Reflexión de la Luz
Se utiliza una pecera que contiene un poco de humo. Al hacer incidir un rayo láser, proveniente de un apuntador, sobre un espejo colocado en su base, se puede observar que el ángulo del rayo incidente es igual al ángulo del rayo reflejado. |
|
11.- Doble reflexión en espejos que
forman 90º
Se dispone de dos pequeños espejos que forman 90º entre sí y se encuentran ubicados dentro de una caja de vidrio transparente con humo. Al hacer incidir un haz de rayo láser en uno de los espejos y ajustarlo de tal manera que se refleje en el otro, se puede observar que el rayo de la segunda reflexión es paralelo al rayo incidente. |
|
12.- Doble reflexión en espejos que
forman 120º
Se dispone de dos pequeños espejos que forman 120º entre sí y se encuentran ubicados dentro de una caja de vidrio transparente con humo. Al hacer incidir un haz de rayo láser en uno de los espejos y ajustarlo de tal manera que se refleje en el otro, se puede observar que el rayo de la segunda reflexión es divergente con respecto al rayo incidente. |
|
Doble reflexión de la luz 45º
Se dispone de dos pequeños espejos que forman 45º entre sí y se encuentran ubicados dentro de una caja de vidrio transparente con humo. Al hacer incidir un haz de rayo láser en uno de los espejos y ajustarlo de tal manera que se refleje en el otro, se puede observar que el rayo de la segunda reflexión es convergente con el rayo incidente, formándose un triángulo de rayos láser entre los espejos. |
Industria
Los
haces enfocados pueden calentar, fundir o vaporizar materiales de forma
precisa. Por ejemplo, los láseres se usan para taladrar diamantes, modelar
máquinas herramientas, recortar componentes microelectrónicos, calentar chips
semiconductores, cortar patrones de moda, sintetizar nuevos materiales o
intentar inducir la fusión nuclear controlada.
Investigación científica
Los
láseres se emplean para detectar los movimientos de la corteza terrestre y para
efectuar medidas geodésicas. También son los detectores más eficaces de ciertos
tipos de contaminación atmosférica. Los láseres se han empleado igualmente para
determinar con precisión la distancia entre la Tierra y la Luna y en experimentos
de relatividad.
Comunicaciones
La
luz de un láser puede viajar largas distancias por el espacio exterior con una
pequeña reducción de la intensidad de la señal. Debido a su alta frecuencia, la
luz láser puede transportar, por ejemplo, 1.000 veces más canales de televisión
de lo que transportan las microondas. Por ello, los láseres resultan ideales
para las comunicaciones espaciales
Medicina
Con
haces intensos y estrechos de luz láser es posible cortar y cauterizar ciertos
tejidos en una fracción de segundo sin dañar al tejido sano circundante. El
láser se ha empleado para `soldar' la retina, perforar el cráneo, reparar
lesiones y cauterizar vasos sanguíneos. También se han desarrollado técnicas
láser para realizar pruebas de laboratorio en muestras biológicas pequeñas.
Tecnología
militar
Los
sistemas de guiado por láser para misiles, aviones y satélites son muy comunes.
La capacidad de los láseres de colorante sintonizables para excitar de forma
selectiva un átomo o molécula puede llevar a métodos más eficientes para la
separación de isótopos en la fabricación de armas nucleares.
Diana. Saludos, buen trabajo, queda registrado.
ResponderEliminarProf. Agustín.